Improving Bond Performance and Reducing Cross-Linker Dosage of Soy Protein Adhesive via Hyper-Branched and Organic-Inorganic Hybrid Structures

Nanomaterials (Basel). 2023 Jan 2;13(1):203. doi: 10.3390/nano13010203.

Abstract

Eco-friendly soybean protein adhesives could be an ideal substitute for replacing traditional formaldehyde-based adhesives in wood industry. However, a large number of cross-linking agents are required in soy protein adhesive formulations to obtain sufficiently performing properties. Inspired by the high performance of nacre and branched structures, a hyper-branched amine (HBPA) was synthesized and grafted to graphene oxide (GO), generating a hyper-branched amine-functionalized GO (FGO). A novel soy protein-based adhesive was developed by mixing FGO with soy protein (SPI) and a low dose polyamidoamine-epichlorohydrin (PAE). Results showed that the addition of only 0.4 wt% FGO and 0.75 wt% PAE to the SPI adhesive formulation enhanced the wet shear strength of plywood to 1.18 MPa, which was 181% higher than that of the adhesive without enhancement. The enhanced performance is attributed to the denser cross-linking structure and improved toughness of the adhesive layer. Using FGO in the adhesive formulation also greatly reduced the concentration of the additive cross-linker by up to 78.6% when compared with values reported in the literature. Thus, using a hyper-branched functionalized nano-material to form an organic-inorganic hybrid structure is an effective and efficient strategy to reinforce the composites and polymers. It significantly reduces the chemical additive levels, and is a practical way to develop a sustainable product.

Keywords: bonding performance; cross-linker dosage; hyper-branched structure; organic–inorganic hybrid; soy protein adhesive.