Efficient Adsorption and Extraction of Glutathione S-Transferases with Glutathione-Functionalized Graphene Oxide-Polyhedral Oligomeric Silsesquioxane Composite

Molecules. 2023 Jan 1;28(1):340. doi: 10.3390/molecules28010340.

Abstract

Glutathione S-transferases (GSTs) are important type-II detoxification enzymes that protect DNA and proteins from damage and are often used as protein tags for the expression of fusion proteins. In the present work, octa-aminopropyl caged polyhedral oligomeric silsesquioxane (OA-POSS) was prepared via acid-catalyzed hydrolysis of 3-aminopropyltriethoxysilane and polymerized on the surface of graphene oxide (GO) through an amidation reaction. Glutathione (GSH) was then modified to GO-POSS through a Michael addition reaction to obtain a GSH-functionalized GO-POSS composite (GPG). The structure and characteristics of the as-prepared GPG composite were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravity analysis, and surface charge analysis. The specific binding interactions between glutathione and GST gave GPG favorable adsorption selectivity towards GST, and other proteins did not affect GST adsorption. The adsorption behavior of GST on the GPG composite conformed to the Langmuir isotherm model, and the adsorption capacity of GST was high up to 364.94 mg g-1 under optimal conditions. The GPG-based solid-phase adsorption process was applied to the extraction of GST from a crude enzyme solution of pig liver, and high-purity GST was obtained via SDS-PAGE identification.

Keywords: adsorption; glutathione S-transferases (GST); graphene oxide (GO); octa-aminopropyl caged polyhedral oligomeric silsesquioxane (OA–POSS); solid-phase extraction.

MeSH terms

  • Adsorption
  • Animals
  • Glutathione* / metabolism
  • Spectroscopy, Fourier Transform Infrared
  • Swine
  • Transferases*

Substances

  • graphene oxide
  • Glutathione
  • Transferases