Foretinib Is Effective against Triple-Negative Breast Cancer Cells MDA-MB-231 In Vitro and In Vivo by Down-Regulating p-MET/HGF Signaling

Int J Mol Sci. 2023 Jan 1;24(1):757. doi: 10.3390/ijms24010757.

Abstract

This study investigated the antitumor effects of foretinib on triple-negative breast cancer cells MDA-MB-231 xenograft tumors in vivo underlying phosphorylated mesenchymal to epithelial transition (p-MET)/ hepatocyte growth factor (HGF)-related mechanism, as well as its pharmacokinetic characteristics. The MDA-MB-231 human breast cancer cell line was used for in vitro experiments, and the tumor xenograft model was established for in vivo experiments. MDA-MB-231 xenograft mice received oral foretinib (15 or 50 mg/kg/day) or vehicle for 18 days. The xenograft tumors were collected. Protein expressions of p-MET and HGF were examined with Western blotting and immunohistochemical staining. The mRNA expression of MET was examined with real-time PCR. Blood samples were collected from the mice treated with foretinib under different doses of 2, 10, and 50 mg/kg, and the pharmacokinetic profiles of foretinib were evaluated. We found that foretinib treatment caused a significant inhibition in tumor growth in a dose-dependent manner, whereas the continuous administration did not result in weight loss in treated nude mice. In both MDA-MB-231 cells and xenograft tumors, foretinib suppressed the expression of p-MET and HGF. These findings reveal that the decrease of p-MET and HGF may play an important role in the anti-breast cancer properties of foretinib.

Keywords: HGF; MDA-MB-231; foretinib; p-MET; pharmacokinetics; triple-negative breast cancer.

MeSH terms

  • Animals
  • Breast Neoplasms* / pathology
  • Cell Line, Tumor
  • Cell Proliferation
  • Female
  • Hepatocyte Growth Factor / metabolism
  • Humans
  • Mice
  • Mice, Nude
  • Triple Negative Breast Neoplasms* / drug therapy
  • Xenograft Model Antitumor Assays

Substances

  • Hepatocyte Growth Factor
  • GSK 1363089
  • HGF protein, human