Atomic Fe/Zn anchored N, S co-doped nano-porous carbon for boosting oxygen reduction reaction

J Colloid Interface Sci. 2023 Apr:635:578-587. doi: 10.1016/j.jcis.2022.12.156. Epub 2023 Jan 2.

Abstract

Dual-single-atom catalysts are well-known due to their excellent catalytic performance of oxygen reduction reaction (ORR) and the tunable coordination environment of the active sites. However, it is still challengable to finely modulate the electronic states of the metal atoms and facilely fabricate a catalyst with dual-single atoms homogeneously dispersed on conductive skeletons with good mass transport. Herein, atomic FeNx/ZnNx sites anchored N, S co-doped nano-porous carbon plates/nanotubes material (Fe0.10ZnNSC) is rationally prepared via a facile room-temperature reaction and high-temperature pyrolysis. The as-prepared Fe0.10ZnNSC catalyst exhibits a positive onset potential of 0.956 V, an impressive half-wave potential of 0.875 V, excellent long-term durability, and a high methanol resistance, outperforming the benchmark Pt/C. The outstanding ORR performance of Fe0.10ZnNSC is due to its unique nanoarchitecture: a large specific surface area (1092.8 cm2 g-1) and well-developed nanopore structure ensure the high accessibility of active sites; the high conductivity of the carbon matrix guarantees a strong ability to transport electrons to the active sites; and the optimized electronic states of FeNx and ZnNx sites possess good oxygen intermediate adsorption/desorption capacity. This strategy can be extended to design and fabricate other non-precious dual-single-atom ORR catalysts.

Keywords: Carbon nanotubes; Dual-single-atom catalysts; N,S co-doped nano-porous carbon; Oxygen reduction reaction; Zeolitic imidazolate framework-7.