Formation and Applications in Electronic Devices of Lattice-Aligned Gallium Oxynitride Nanolayer on Gallium Nitride

Adv Mater. 2023 Mar;35(12):e2208960. doi: 10.1002/adma.202208960. Epub 2023 Feb 9.

Abstract

Gallium nitride (GaN), a promising alternative semiconductor to Si, is widely used in photoelectronic and electronic technologies. However, the vulnerability of the GaN surface is a critical restriction that hinders the development of GaN-based devices, especially in terms of device stability and reliability. In this study, this challenge is overcome by converting the GaN surface into a gallium oxynitride (GaON) epitaxial nanolayer through an in situ two-step "oxidation-reconfiguration" process. The O plasma treatment overcomes the chemical inertness of the GaN surface, and sequential thermal annealing manipulates the kinetic-thermodynamic reaction pathways to create a metastable GaON nanolayer with a wurtzite lattice. The GaN-derived GaON nanolayer is a tailored structure for surface reinforcement and possesses several advantages, including a wide bandgap, high thermodynamic stability, and large valence band offset with a GaN substrate. These physical properties can be further leveraged to enhance the performance of GaN-based devices in various applications, such as power systems, complementary logic integrated circuits, photoelectrochemical water splitting, and ultraviolet photoelectric conversion.

Keywords: gallium nitride; gallium oxynitride; nanolayers; oxidation; surfaces.