Generation of Defective Few-Layered Graphene Mesostructures by High-Energy Ball Milling and Their Combination with FeSiCuNbB Microwires for Reinforcing Microwave Absorbing Properties

ACS Appl Mater Interfaces. 2023 Jan 18;15(2):3507-3521. doi: 10.1021/acsami.2c19886. Epub 2023 Jan 6.

Abstract

Defective few-layered graphene mesostructures (DFLGMs) are produced from graphite flakes by high-energy milling processes. We obtain an accurate control of the generated mesostructures, as well as of the amount and classification of the structural defects formed, providing a functional material for microwave absorption purposes. Working under far-field conditions, competitive values of minimum reflection loss coefficient (RLmin) = -21.76 dB and EAB = 4.77 dB are achieved when DFLGMs are immersed in paints at a low volume fraction (1.95%). One step forward is developed by combining them with the excellent absorption behavior that offers amorphous Fe73.5Si13.5B9Cu1Nb microwires (MWs), varying their filling contents, which are below 3%. We obtain a RLmin improvement of 47% (-53.08 dB) and an EAB enhancement of 137% (4 dB) compared to those obtained by MW-based paints. Furthermore, a fmin tunability is demonstrated, maintaining similar RLmin and EAB values, irrespective of an ideal matching thickness. In this scenario, the Maxwell-Garnet standard model is valid, and dielectric losses mainly come from multiple reflections, interfacial and dielectric polarizations, which greatly boost the microwave attenuation of MWs. The present concept can remarkably enhance not only the MW attenuation but can also apply to other microwave absorption architectures of technological interest by adding low quantities of DFLGMs.

Keywords: FeSiNbCuB microwires; confocal Raman microscopy; defective few-layered graphene mesostructures; electromagnetic absorbing composites; high-energy ball milling; microwave absorbing paints.