[Neuroprotective effect of cinnamaldehyde in MPTP-induced mouse model of subacute Parkinson's disease]

Zhongguo Zhong Yao Za Zhi. 2022 Dec;47(23):6485-6493. doi: 10.19540/j.cnki.cjcmm.20220721.702.
[Article in Chinese]

Abstract

This paper aims to explore the neuroprotective effect of cinnamaldehyde(CA) in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced subacute Parkinson's disease(PD) and the mechanism. To be specific, male C57 BL/6 mice(n=72, SPF) were randomized into control group, model group, positive control(madopar 0.1 mg·g~(-1)) group, and low-dose, me-dium-dose, and high-dose CA groups(0.15, 0.30, 0.60 mg·g~(-1)). MPTP(intraperitoneal injection, 0.03 mg·g~(-1), once a day for 5 days) was used to induce subacute PD in mice except for the control group. The administration began from the day of modeling and lasted 19 days. On the 0 th, 12 th, and 19 th day, the open field test, pole test, and rotarod test were carried out. After the tests, the mice were killed and brains were separated. In addition, the organ index was measured. The number of cells in substantia nigra(SN) in the midbrain of MPTP-induced PD model mice was detected based on hematoxylin and eosin(HE) staining. The levels of tyrosine hydroxylase(TH)-and α-synuclein(α-Syn)-positive cells in SN were determined by immunohistochemical staining, and the protein levels of TH and α-Syn in SN by Western blot. The results showed that the MPTP-stimulated mice had abnormal behaviors such as erect hair, arched back, rigidity of the tail, slow movement, and tremor, decreased number of crossings and rearing, increased frequency of urination and defecation, longer time of pole climbing, and shorter time of staying on the rotating rod. In addition, the mice showed obvious damage of neurons in the SN and reduced neuron cells in irregular arrangement with some shrinking. In addition, the average optical density of TH in SN decreased and that of α-Syn increased. All these suggested the successful modeling. CA displayed obvious therapeutic effect on the PD mice, as manifested by the increased number of crossings and rearing, decreased frequency of urination and defecation, shorter time of climbing pole, longer time of staying on the rotating rod, and more neuron cells in the SN with a few pykno-tic cells. Moreover, CA significantly alleviated the decrease of TH and the overexpression of α-Syn in SN. As a result, the MPTP-induced injury of dopaminergic neurons was alleviated. The performance of 0.3 mg·g~(-1) CA was the best. This study is expected to lay a scientific basis for the development of CA products.

Keywords: Parkinson′s disease; cinnamaldehyde; dyskinesia; substantia nigra; α-synuclein.

Publication types

  • English Abstract

MeSH terms

  • Animals
  • Disease Models, Animal
  • Dopaminergic Neurons
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neuroprotective Agents* / pharmacology
  • Neuroprotective Agents* / therapeutic use
  • Parkinson Disease* / drug therapy
  • Parkinson Disease* / etiology
  • Substantia Nigra / metabolism
  • Tyrosine 3-Monooxygenase / metabolism

Substances

  • Neuroprotective Agents
  • cinnamaldehyde
  • Tyrosine 3-Monooxygenase