Copper-Nitrogen-Coordinated Carbon Dots: Transformable Phototheranostics from Precise PTT/PDT to Post-Treatment Imaging-Guided PDT for Residual Tumor Cells

ACS Appl Mater Interfaces. 2023 Jan 18;15(2):3253-3265. doi: 10.1021/acsami.2c17525. Epub 2023 Jan 4.

Abstract

Phototheranostics has attracted considerable attention in the fields of cancer diagnosis and treatment. However, the complete eradication of solid tumors using traditional phototheranostics is difficult because of the limited depth and range of laser irradiation. New phototheranostics enabling precise phototherapy and post-treatment imaging-guided programmed therapy for residual tumors is urgently required. Accordingly, this study developed a novel transformable phototheranostics by assembling hyaluronic acid (HA) with copper-nitrogen-coordinated carbon dots (CDs). In this transformable nanoplatform, named copper-nitrogen-CDs@HA, the HA component enables the specific targeting of cluster determinant (CD) 44-overexpressing tumor cells. In the tumor cells, redox glutathione converts Cu(II) (cupric ions) into Cu(I) (cuprous ions), which confers the novel transformable functionality to phototheranostics. Both in vitro and in vivo results reveal that the near-infrared-light-photoactivated CuII-N-CDs@HA could target CD44-overexpressing tumor cells for precise synergistic photothermal therapy and photodynamic therapy. This study is the first to observe that CuII-N-CDs@HA could escape from lysosomes and be transformed in situ into CuI-N-CDs@HA in tumor cells, with the d9 electronic configuration of Cu(II) changing to the d10 electronic configuration of Cu(I), which turns on their fluorescence and turns off their photothermal properties. This transformable phototheranostics could be used for post-treatment imaging-guided photodynamic therapy on residual tumor cells. Thus, the rationally designed copper-nitrogen-coordinated CDs offer a simple in situ transformation strategy for using multiple-stimulus-responsive precise phototheranostics in post-treatment monitoring of residual tumor cells and imaging-guided programmed therapy.

Keywords: copper-nitrogen-coordinated carbon dot; imaging-guided phototherapy; lysosome escape; post-treatment; transformable phototheranostics.

MeSH terms

  • Carbon / chemistry
  • Carbon / pharmacology
  • Cell Line, Tumor
  • Copper / chemistry
  • Copper / pharmacology
  • Humans
  • Nanoparticles* / therapeutic use
  • Neoplasm, Residual / drug therapy
  • Nitrogen / chemistry
  • Nitrogen / pharmacology
  • Photochemotherapy* / methods
  • Phototherapy

Substances

  • Carbon
  • Copper
  • Nitrogen