Ruthenium(II)-Dithiocarbazates as Anticancer Agents: Synthesis, Solution Behavior, and Mitochondria-Targeted Apoptotic Cell Death

Chemistry. 2023 Mar 28;29(18):e202202694. doi: 10.1002/chem.202202694. Epub 2023 Feb 24.

Abstract

The reaction of the Ru(PPh3 )3 Cl2 with HL1-3 -OH (-OH stands for the oxime hydroxyl group; HL1 -OH=diacetylmonoxime-S-benzyldithiocarbazonate; HL2 -OH=diacetylmonoxime-S-(4-methyl)benzyldithiocarbazonate; and HL3 -OH=diacetylmonoxime-S-(4-chloro)benzyl-dithiocarbazonate) gives three new ruthenium complexes [RuII (L1-3 -H)(PPh3 )2 Cl] (1-3) (-H stands for imine hydrogen) coordinated with dithiocarbazate imine as the final products. All ruthenium(II) complexes (1-3) have been characterized by elemental (CHNS) analyses, IR, UV-vis, NMR (1 H, 13 C, and 31 P) spectroscopy, HR-ESI-MS spectrometry and also, the structure of 1-2 was further confirmed by single crystal X-ray crystallography. The solution/aqueous stability, hydrophobicity, DNA interactions, and cell viability studies of 1-3 against HeLa, HT-29, and NIH-3T3 cell lines were performed. Cell viability results suggested 3 being the most cytotoxic of the series with IC50 6.9±0.2 μM against HeLa cells. Further, an apoptotic mechanism of cell death was confirmed by cell cycle analysis and Annexin V-FITC/PI double staining techniques. In this regard, the live cell confocal microscopy results revealed that compounds primarily target the mitochondria against HeLa, and HT-29 cell lines. Moreover, these ruthenium complexes elevate the ROS level by inducing mitochondria targeting apoptotic cell death.

Keywords: DNA interaction; cytotoxicity; mitochondria-mediated apoptosis; ruthenium(II)-dithiocarbazates; solution study.

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Apoptosis
  • Cell Line, Tumor
  • Coordination Complexes* / chemistry
  • Coordination Complexes* / pharmacology
  • HeLa Cells
  • Humans
  • Imines
  • Ruthenium* / chemistry

Substances

  • Ruthenium
  • diacetylmonoxime
  • Antineoplastic Agents
  • Imines
  • Coordination Complexes