Dynamic release of neuronal extracellular vesicles containing miR-21a-5p is induced by hypoxia

J Extracell Vesicles. 2023 Jan;12(1):e12297. doi: 10.1002/jev2.12297.

Abstract

Hypoxia induces changes in the secretion of extracellular vesicles (EVs) in several non-neuronal cells and pathological conditions. EVs are packed with biomolecules, such as microRNA(miR)-21-5p, which respond to hypoxia. However, the true EV association of miR-21-5p, and its functional or biomarker relevance, are inadequately characterised. Neurons are extremely sensitive cells, and it is not known whether the secretion of neuronal EVs and miR-21-5p are altered upon hypoxia. Here, we characterised the temporal EV secretion profile and cell viability of neurons under hypoxia. Hypoxia induced a rapid increase of miR-21a-5p secretion in the EVs, which preceded the elevation of hypoxia-induced tissue or cellular miR-21a-5p. Prolonged hypoxia induced cell death and the release of morphologically distinct EVs. The EVs protected miR-21a-5p from enzymatic degradation but a remarkable fraction of miR-21a-5p remained fragile and non-EV associated. The increase in miR-21a-5p secretion may have biomarker potential, as high blood levels of miR-21-5p in stroke patients were associated with significant disability at hospital discharge. Our data provides an understanding of the dynamic regulation of EV secretion from neurons under hypoxia and provides a candidate for the prediction of recovery from ischemic stroke.

Keywords: biomarkers; extracellular vesicle; hypoxia; ischemic stroke; miR-21a-5p; neuron.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers / metabolism
  • Extracellular Vesicles* / metabolism
  • Humans
  • MicroRNAs* / metabolism
  • Neurons / metabolism

Substances

  • MicroRNAs
  • Biomarkers