Valence Engineering Enhancing NH4 + Storage Capacity of Manganese Oxides

Small. 2023 Apr;19(14):e2206727. doi: 10.1002/smll.202206727. Epub 2023 Jan 2.

Abstract

Ammonium ions (NH4 + ), as non-metallic charge carriers, are attracting attention in aqueous batteries due to its low molar mass, element sufficiency, and non-toxicity. However, the host materials for NH4 + storage are still limited. Herein, an oxygen defects-rich manganese oxide (MnO2-x ) for NH4 + storage are reported. The oxygen defects can endow the MnO2-x sample with improved electric conductivity and low interface activation energy. The electrochemical reaction mechanism is also verified by using ex situ X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectroscopy (FT-IR), demonstrating the insertion and extraction of NH4 + in the MnO2-x by formation/breaking of a hydrogen bond. As a result, MnO2-x delivers a high capacity of 109.9 mAh g-1 at the current density of 0.5 A g-1 and retention of 24 mAh g-1 after 1000 cycles at the current density of 4 A g-1 , outperforming the pristine MnO2 sample.

Keywords: ammonium ion batteries; hydrogen bond; manganese oxide; oxygen vacancies.