Development of Thermochromic Ink Using the Anthocyanidin-Based Red-Cabbage Extract for Anticounterfeiting Applications

ACS Omega. 2022 Dec 14;7(51):48215-48223. doi: 10.1021/acsomega.2c06314. eCollection 2022 Dec 27.

Abstract

Temperature-driven colorful switching inks have been an interesting security encoding method to improve the anticounterfeiting properties of commercially available merchandise. Recently, thermochromic inks have faced many disadvantages, such as low efficiency, high cost, and low durability. In the current study, we developed self-healable ink from poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) integrated with the anthocyanidin(ACY)-based red-cabbage extract in the presence of ferrous sulfate for authentication purposes. Self-healable inks have been able to guarantee durability and thermal stability. Environmentally friendly, ACY-based chromophore was extracted from Brassica oleracea L. var. Capitata (red-cabbage) to serve as a spectroscopic probe immobilized into PAMPSA. The prepared self-healable nanocomposite ink (PAMPSA-ACY) displayed temperature-induced chromism with high reversibility and thermal stability. Different self-healable nanocomposite inks of thermochromic features were prepared employing different ratios of the ACY-based red-cabbage extract. As described by Commission Internationale de L'éclairage Lab coordinates, homogeneous films were stamped on the paper surface to show a purple color (631 nm) able to switch color into red (458 nm) with the increase in temperature from 25 to 65 °C, respectively. Transmission electron microscopy, infrared spectra (FT-IR), energy-dispersive X-ray, and scanning electron microscopy were utilized to inspect the morphological behavior and chemical compositions of thermochromic prints. Both mechanical and rheological properties of ink-printed paper substrates and ink solution were also investigated. Both of antimicrobial activity and cytotoxicity study of the nanocomposite ink (PAMPSA-ACY) were also evaluated. Various industries can take the advantage of the current ink as a competent approach for anticounterfeiting purposes.