Exploring the Potential Mechanism of Artemisinin and Its Derivatives in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking

Comput Math Methods Med. 2022 Dec 22:2022:3976062. doi: 10.1155/2022/3976062. eCollection 2022.

Abstract

Objective: This study is aimed at predicting and contrasting the mechanisms of artemisinin (ARS), dihydroartemisinin (DHA), artesunate (ART), artemether (ARM), and arteether (ARE) in the treatment of osteoporosis (OP) using network pharmacology and molecular docking.

Methods: The targets of ARS, DHA, ART, ARM, and ARE were obtained from the SwissTargetPrediction. The targets related to OP were obtained from the TTD, DrugBank, Genecards, and DisGeNet databases. Then, the anti-OP targets of ARS, DHA, ART, ARM, and ARE were obtained and compared using the Venn diagram. Afterward, the protein-protein interaction (PPI) networks were built using the STRING database, and Cytoscape was used to select hub targets. Moreover, molecular docking validated the binding association between five molecules and hub targets. Finally, GO enrichment and KEGG pathway enrichment were conducted using the DAVID database. The common pathways of five molecules were analysed.

Results: A total of 28, 37, 36, 27, and 33 anti-OP targets of ARS, DHA, ART, ARM, and ARE were acquired. EGFR, EGFR, CASP3, MAPK8, and CASP3 act as the top 1 anti-OP targets of ARS, DHA, ART, ARM, and ARE, respectively. MAPK14 is the common target of five molecules. All five molecules can bind well with these hubs and common targets. Meanwhile, functional annotation showed that MAPK, Serotonergic synapse, AMPK, prolactin, and prolactin signaling pathways are the top 1 anti-OP pathway of ARS, DHA, ART, ARM, and ARE, respectively. IL-17 signaling pathway and prolactin signaling pathway are common anti-OP pathways of five molecules. Besides, GO enrichment showed five biological processes and three molecular functions are common anti-OP mechanisms of five molecules.

Conclusion: ARS, DHA, ART, ARM and ARE can treat OP through multi-targets and multi pathways, respectively. All five molecules can treat OP by targeting MAPK14 and acting on the IL-17 and prolactin signaling pathways.

MeSH terms

  • Artemether
  • Artemisinins* / pharmacology
  • Artemisinins* / therapeutic use
  • Artesunate / pharmacology
  • Caspase 3
  • Drugs, Chinese Herbal*
  • ErbB Receptors
  • Humans
  • Interleukin-17
  • Mitogen-Activated Protein Kinase 14*
  • Molecular Docking Simulation
  • Network Pharmacology
  • Osteoporosis* / drug therapy
  • Prolactin

Substances

  • Caspase 3
  • Interleukin-17
  • Mitogen-Activated Protein Kinase 14
  • Prolactin
  • artemisinin
  • artemotil
  • artenimol
  • Artemisinins
  • Artemether
  • Artesunate
  • ErbB Receptors
  • Drugs, Chinese Herbal