Laser speckle simulation tool based on stochastic differential equations for bio imaging applications

Biomed Opt Express. 2022 Nov 30;13(12):6745-6762. doi: 10.1364/BOE.470926. eCollection 2022 Dec 1.

Abstract

Laser speckle-based blood flow imaging is a well-accepted and widely used method for pre-clinical and clinical applications. Although it was introduced as a method to measure only superficial blood flow (< 1mm depth), several recently introduced variants resulted in measuring deep tissue blood flow (a few cm) as well. A means of simulating laser speckles is often necessary for the analysis and development of these imaging modalities, as evident from many such attempts towards developing simulation tools in the past. Such methods often employ Fourier transforms or statistical tools to simulate speckles with desired statistical properties. We present the first method to use a stochastic differential equation to generate laser speckles with a pre-determined probability density function and a temporal auto-correlation. The method allows the choice of apriori gamma distribution along with simple exponential or more complex temporal auto-correlation statistics for simulated speckles, making it suitable for different blood flow profiles. In contrast to the existing methods that often generate speckles associated with superficial flow, we simulate both superficial and diffuse speckles leading to applications in deep tissue blood flow imaging. In addition, we have also incorporated appropriate models for noise associated with the detectors to simulate realistic speckles. We have validated our model by comparing the simulated speckles with those obtained from in-vivo studies in mice and healthy human subject.