Diagnosing low-mode (ℓ < 6) and mid-mode (6 ≤ ℓ ≤ 60) asymmetries in the post-stagnation phase of laser-direct-drive deuterium-tritium cryogenic implosions on OMEGA

Rev Sci Instrum. 2022 Dec 1;93(12):123513. doi: 10.1063/5.0101653.

Abstract

Low- and mid-mode perturbations are possible candidates for performance limitations in cryogenic direct-drive implosions on the OMEGA laser at the Laboratory of Laser Energetics. Simulations with a 3D hydrocode demonstrated that hotspot imagers do not show evidence of the shell breakup in the dense fuel. However, these same simulations revealed that the low- and mid-mode perturbations in the dense fuel could be diagnosed more easily in the post-stagnation phase of the implosion by analyzing the peak in the x-ray emission limb at the coronal-fuel interface than before or at the stagnation phase. In experiments, the asymmetries are inferred from gated images of the x-ray emission of the implosion by using a 16-pinhole array imager filtered to record x-ray energies >800 eV and an x-ray framing camera with 40-ps time integration and 20-μm spatial resolution. A modal analysis is applied to the spatial distribution of the x-ray emission from deuterium and tritium cryogenic implosions on OMEGA recorded after the bang time to diagnose the low- and mid-mode asymmetries, and to study the effect that the beam-to-target ratio (Rb/Rt) has on the shell integrity.