Redistribution effect of irrigation on shallow groundwater recharge source contributions in an arid agricultural region

Sci Total Environ. 2023 Mar 20:865:161106. doi: 10.1016/j.scitotenv.2022.161106. Epub 2022 Dec 28.

Abstract

Recharge sources such as precipitation, mountain front recharge, mountain block recharge and confined water are the sources usually considered in quantitative studies of groundwater recharge. Changes in recharge processes caused by irrigation practices need to be fully considered for the accurate budgeting and management of water resources. Here, we put forward a conceptual framework for evaluating the shallow groundwater recharge process in arid irrigated agricultural areas using hydrochemical and stable isotope techniques, combined with an assessment of hydrogeological conditions and quantitative models. In general, the recharge effect of atmospheric precipitation on shallow groundwater in arid areas is relatively small. The contributions made by recharge sources in the studied river irrigated area, from greater to smaller, were confined groundwater (46.98 %), river water (45.48 %) and precipitation (7.55 %). The original range in groundwater recharge levels caused by river leakage also appeared to have expanded in response to the establishment of canal irrigation networks. Lateral groundwater flow and confined groundwater were the main recharge sources of shallow groundwater in areas fed by well irrigation and well-/spring-water irrigation (not taking into account any groundwater irrigation leakage). However, had the recharge of shallow groundwater by groundwater irrigation leakage, which reached 19.8-41.1 %, not been counted as contributing to actual groundwater recharge, the recharge contributions made by lateral groundwater flow and confined groundwater to shallow groundwater would have been significantly overestimated. This is because the groundwater recharge process has been modified by the various irrigation measures employed in arid agricultural areas, leading to a redistribution effect in groundwater recharge source contributions. This study provides a new perspective and intuitive data support for the development and utilization of water resources in arid regions.

Keywords: Arid agricultural areas; Complex recharge sources; Groundwater; Hydrogen and oxygen isotopes; Irrigation water.