Functional and structural characterization of an endo-β-1,3-glucanase from Euglena gracilis

Biochimie. 2023 May:208:117-128. doi: 10.1016/j.biochi.2022.12.016. Epub 2022 Dec 28.

Abstract

Endo-β-1,3-glucanases from several organisms have attracted much attention in recent years because of their capability for in vitro degrading β-1,3-glucan as a critical step for both biofuels production and short-chain oligosaccharides synthesis. In this study, we biochemically characterized a putative endo-β-1,3-glucanase (EgrGH64) belonging to the family GH64 from the single-cell protist Euglena gracilis. The gene coding for the enzyme was heterologously expressed in a prokaryotic expression system supplemented with 3% (v/v) ethanol to optimize the recombinant protein right folding. Thus, the produced enzyme was highly purified by immobilized-metal affinity and gel filtration chromatography. The enzymatic study demonstrated that EgrGH64 could hydrolyze laminarin (KM 23.5 mg ml-1,kcat 1.20 s-1) and also, but with less enzymatic efficiency, paramylon (KM 20.2 mg ml-1,kcat 0.23 ml mg-1 s-1). The major product of the hydrolysis of both substrates was laminaripentaose. The enzyme could also use ramified β-glucan from the baker's yeast cell wall as a substrate (KM 2.10 mg ml-1, kcat 0.88 ml mg-1 s-1). This latter result, combined with interfacial kinetic analysis evidenced a protein's greater efficiency for the yeast polysaccharide, and a higher number of hydrolysis sites in the β-1,3/β-1,6-glucan. Concurrently, the enzyme efficiently inhibited the fungal growth when used at 1.0 mg/mL (15.4 μM). This study contributes to assigning a correct function and determining the enzymatic specificity of EgrGH64, which emerges as a relevant biotechnological tool for processing β-glucans.

Keywords: Euglenoids; GH64 protein; Laminarin; Paramylon.

MeSH terms

  • Euglena gracilis*
  • Hydrolysis
  • Kinetics
  • Polysaccharides / metabolism
  • Saccharomyces cerevisiae / metabolism
  • Substrate Specificity

Substances

  • Polysaccharides