Binding Energy and Diffusion Barrier of Formic Acid on Pd(111)

J Phys Chem A. 2023 Jan 12;127(1):142-152. doi: 10.1021/acs.jpca.2c07414. Epub 2022 Dec 30.

Abstract

Velocity-resolved kinetics is used to measure the thermal rate of formic acid desorption from Pd(111) between 228 and 273 K for four isotopologues: HCOOH, HCOOD, DCOOH, DCOOD. Upon molecular adsorption, formic acid undergoes decomposition to CO2 and H2 and thermal desorption. To disentangle the contributions of individual processes, we implement a mass-balance-based calibration procedure from which the branching ratio between desorption and decomposition for formic acid is determined. From experimentally derived elementary desorption rate constants, we obtain the binding energy 639 ± 8 meV and the diffusion barrier 370 ± 130 meV using the detailed balance rate model (DBRM). The DBRM explains the observed kinetic isotope effects.