Genomic characterization of Plasmodium falciparum genes associated with anti-folate drug resistance and treatment outcomes in eastern India: A molecular surveillance study from 2008 to 2017

Front Cell Infect Microbiol. 2022 Dec 13:12:865814. doi: 10.3389/fcimb.2022.865814. eCollection 2022.

Abstract

Introduction: After being used vigorously for the previous two decades to treat P. falciparum, chloroquine and sulfadoxine-pyrimethamine were replaced in 2009 with an artemisinin-based combination therapy (artesunate-sulfadoxine-pyrimethamine) in an effort to combat multidrug-resistant parasites.

Methods: We set out to assess the genetic variants of sulfadoxine-pyrimethamine resistance and the effectiveness of its treatment in eastern India prior to, during, and 6 to 8 years following the introduction of the new pharmacological regime. In 2008-2009, 318 P. falciparum-positive patients got the recommended doses of sulfadoxine-pyrimethamine. We used 379 additional isolates from 2015 to 2017 in addition to the 106 isolates from 2010. All 803 isolates from two study sites underwent in vitro sulfadoxine-pyrimethamine sensitivity testing and genomic characterisation of sulfadoxine-pyrimethamine resistance (pfdhfr and pfdhps).

Results: In Kolkata and Purulia, we observed early treatment failure in 30.7 and 14.4% of patients, respectively, whereas recrudescence was found in 8.1 and 13.4% of patients, respectively, in 2008-2009. In 2017, the proportion of in vitro pyrimethamine and sulfadoxine resistance steadily grew in Kolkata and Purulia despite a single use of sulfadoxine-pyrimethamine. Treatment failures with sulfadoxine-pyrimethamine were linked to quintuple or quadruple pfdhfr- pfdhps mutations (AICII-AGKAT, AICII-AGKAA, AICII-SGKGT, AICII-AGKAA, AICNI-AGKAA) in 2008-2009 (p < 0.001). The subsequent spread of mutant-haplotypes with higher in vitro sulfadoxine-pyrimethamine resistance (p < 0.001), such as the sextuple (dhfr-AIRNI+dhps-AGEAA, dhfr-ANRNL+dhps-AGEAA) and septuple (dhfr-AIRNI+dhps-AGEAT), mutations were observed in 2015-2017.

Discussion: This successive spread of mutations with high in vitro sulfadoxine-pyrimethamine resistance confirmed the progressive increase in antifolate resistance even after an 8-year withdrawal of sulfadoxine-pyrimethamine.

Keywords: Plasmodium falciparum; antifolate resistance; in vitro pyrimethamine resistance; in vitro sulfadoxine resistance; pfdhfr mutation; pfdhps mutation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antimalarials* / pharmacology
  • Antimalarials* / therapeutic use
  • Drug Combinations
  • Drug Resistance / genetics
  • Genomics
  • Humans
  • Malaria, Falciparum* / drug therapy
  • Malaria, Falciparum* / parasitology
  • Mutation
  • Plasmodium falciparum / genetics
  • Sulfadoxine / pharmacology
  • Sulfadoxine / therapeutic use
  • Tetrahydrofolate Dehydrogenase / genetics
  • Treatment Outcome

Substances

  • Antimalarials
  • Sulfadoxine
  • Tetrahydrofolate Dehydrogenase
  • Drug Combinations