Submillimeter-Resolution PET for High-Sensitivity Mouse Brain Imaging

J Nucl Med. 2023 Jun;64(6):978-985. doi: 10.2967/jnumed.122.264433. Epub 2022 Dec 29.

Abstract

PET is a powerful molecular imaging technique that can provide functional information on living objects. However, the spatial resolution of PET imaging has been limited to around 1 mm, which makes it difficult to visualize mouse brain function in detail. Here, we report an ultrahigh-resolution small-animal PET scanner we developed that can provide a resolution approaching 0.6 mm to visualize mouse brain function with unprecedented detail. Methods: The ultrahigh-resolution small-animal PET scanner has an inner diameter of 52.5 mm and axial coverage of 51.5 mm. The scanner consists of 4 rings, each of which has 16 depth-of-interaction detectors. Each depth-of-interaction detector consists of a 3-layer staggered lutetium yttrium orthosilicate crystal array with a pitch of 1 mm and a 4 × 4 silicon photomultiplier array. The physical performance was evaluated in accordance with the National Electrical Manufacturers Association NU4 protocol. Spatial resolution was evaluated with phantoms of various resolutions. In vivo glucose metabolism imaging of the mouse brain was performed. Results: Peak absolute sensitivity was 2.84% with an energy window of 400-600 keV. The 0.55-mm rod structure of a resolution phantom was resolved using an iterative algorithm. In vivo mouse brain imaging with 18F-FDG clearly identified the cortex, thalamus, and hypothalamus, which were barely distinguishable in a commercial preclinical PET scanner that we used for comparison. Conclusion: The ultrahigh-resolution small-animal PET scanner is a promising molecular imaging tool for neuroscience research using rodent models.

Keywords: depth of interaction; in vivo mouse brain imaging; preclinical PET; submillimeter resolution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Equipment Design
  • Fluorodeoxyglucose F18*
  • Mice
  • Neuroimaging
  • Phantoms, Imaging
  • Positron-Emission Tomography*

Substances

  • Fluorodeoxyglucose F18
  • lutetium orthosilicate