Stimulus size modulates idiosyncratic neural face identity discrimination

J Vis. 2022 Dec 1;22(13):9. doi: 10.1167/jov.22.13.9.

Abstract

Humans show individual differences in neural facial identity discrimination (FID) responses across viewing positions. Critically, these variations have been shown to be reliable over time and to directly relate to observers' idiosyncratic preferences in facial information sampling. This functional signature in facial identity processing might relate to observer-specific diagnostic information processing. Although these individual differences are a valuable source of information for interpreting data, they can also be difficult to isolate when it is not possible to test many conditions. To address this potential issue, we explored whether reducing stimulus size would help decrease these interindividual variations in neural FID. We manipulated the size of face stimuli (covering 3°, 5°, 6.7°, 8.5°, and 12° of visual angle), as well as the fixation location (left eye, right eye, below the nasion, nose, and mouth) while recording electrophysiological responses. Same identity faces were presented with a base frequency of 6 Hz. Different identity faces were periodically inserted within this sequence to trigger an objective index of neural FID. Our data show robust and consistent individual differences in neural face identity discrimination across viewing positions for all face sizes. Nevertheless, FID was optimal for a larger number of observers when faces subtended 6.7° of visual angle and fixation was below the nasion. This condition is the most suited to reduce natural interindividual variations in neural FID patterns, defining an important benchmark to measure neural FID when it is not possible to assess and control for observers' idiosyncrasies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electroencephalography*
  • Eye
  • Face*
  • Humans
  • Pattern Recognition, Visual / physiology
  • Photic Stimulation