Piezoresistive Fibers with Large Working Factors for Strain Sensing Applications

ACS Appl Mater Interfaces. 2023 Jan 11;15(1):2277-2288. doi: 10.1021/acsami.2c19830. Epub 2022 Dec 28.

Abstract

Piezoresistive fibers with large working factors remain of great interest for strain sensing applications involving large strains, yet difficult to achieve. Here, we produced strain-sensitive fibers with large working factors by dip-coating nanocomposite piezoresistive inks on surface-modified polyether block amide (PEBA) fibers. Surface modification of neat PEBA fibers was carried out with polydopamine (PDA) while nanocomposite conductive inks consisted of styrene-ethylene-butylene-styrene (SEBS) elastomer and carbon black (CB). As such, the deposition of piezoresistive coatings was enabled through nonconventional hydrogen-bonding interactions. The resultant fibers demonstrated well-defined piezoresistive linear relationships, which increased with CB filler loading in SEBS. In addition, gauge factors decreased with increasing CB mass fractions from ∼15 to ∼7. Furthermore, we used the fatigue theory to predict the endurance limit (Ce) of our fibers toward resistance signal stability. Such a piezoresistive performance allowed us to explore the application of our fibers as strain sensors for monitoring the movement of finger joints.

Keywords: fiber; gauge factor; nanocomposite; piezoresistance; sensor; working factor.