Hsa_ Circ_0005044 Promotes Osteo/Odontogenic Differentiation of Dental Pulp Stem Cell Via Modulating miR-296-3p/FOSL1

DNA Cell Biol. 2023 Jan;42(1):14-26. doi: 10.1089/dna.2022.0394. Epub 2022 Dec 22.

Abstract

Circular RNAs (circRNAs) are a form of RNAs that lack coding potential. The role of such circRNAs in dental pulp stem cell (DPSC) osteo/odontogenic differentiation remains to be determined. In this study, circRNA expression profiles in DPSC osteo/odontogenic differentiation process were analyzed by RNA-seq. qRT-PCR was used to confirm the differential expression of circ_0005044, miR-296-3p, and FOSL1 in DPSC osteogenic differentiation process. Circ_0005044, miR-296-3p, and FOSL1 were knocked down or overexpressed. Osteoblastic activity and associated mineral activity were monitored via alkaline phosphatase (ALP) and alizarin red S (ARS) staining. Interactions between miR-296-3p, circ_0005044, and FOSL1 were assessed through luciferase reporter assays. Finally, an in vivo system was used to confirm the relevance of circ_0005044 to osteoblastic differentiation. As results, we detected significant circ_0005044 and FOSL1 upregulation in DPSC osteo/odontogenic differentiation process, as well as concomitant miR-296-3p downregulation. When knocking down circ_0005044 or overexpressed miR-296-3p, this significantly inhibited osteogenesis. Luciferase reporter assay confirmed that miR-296-3p was capable of binding to conserved sequences in the wild-type forms of both the circ_0005044 and FOSL1. Furthermore, knocking down circ_0005044 in vivo significantly attenuated bone formation. Therefore, the circ_0005044/miR-2964-3p/FOSL1 axis regulates DPSC osteo/odontogenic differentiation, which may provide potential molecular targets for dental-pulp complex regeneration.

Keywords: circRNAs; dental pulp stem cells; miRNAs; osteo/odontogenic differentiation.

MeSH terms

  • Cell Differentiation / genetics
  • Dental Pulp / metabolism
  • MicroRNAs* / metabolism
  • Osteogenesis / genetics
  • RNA, Circular / genetics
  • RNA, Circular / metabolism
  • Stem Cells

Substances

  • MicroRNAs
  • RNA, Circular