Probing Colloidal Assembly on Non-Axisymmetric Droplet Surfaces via Electrospray

Langmuir. 2023 Jan 10;39(1):469-477. doi: 10.1021/acs.langmuir.2c02729. Epub 2022 Dec 28.

Abstract

Microparticles trapped on the surface of a sessile droplet interact via electrostatic and capillary forces. The assembly of colloids at a fluid-fluid interface is governed by particle size, surface chemistry, and contact line roughness. We created nonspherical droplets using surface energy patterning and delivered microparticles to the liquid-air interface with electrospray atomization. Using a water droplet as the target, the particle assembly was observed over time. We found that the underlying surface energy pattern significantly influenced the colloidal assembly and drove particles toward the center of the droplet. The particles were arranged into a single, non-close-packed cluster with local hexagonal ordering but left a clear region with very few particles near the contact line. This depletion region is attributed to long-range electrostatic repulsion from the photoresist used to create the surface energy pattern, which retained electric charge from the electrospray. To understand the effect of electrostatic interactions, we explored target droplets with dissimilar dielectric properties. Using patterned substrates and electrospray for particle deposition, we can harness the assembly of colloids at a fluid interface to build repeatable monolayer patterns.