Fasted Sprint Interval Training Results in Some Beneficial Skeletal Muscle Metabolic, but Similar Metabolomic and Performance Adaptations Compared With Carbohydrate-Fed Training in Recreationally Active Male

Int J Sport Nutr Exerc Metab. 2022 Dec 26;33(2):73-83. doi: 10.1123/ijsnem.2022-0142. Print 2023 Mar 1.

Abstract

Endurance training in fasted conditions (FAST) induces favorable skeletal muscle metabolic adaptations compared with carbohydrate feeding (CHO), manifesting in improved exercise performance over time. Sprint interval training (SIT) is a potent metabolic stimulus, however nutritional strategies to optimize adaptations to SIT are poorly characterized. Here we investigated the efficacy of FAST versus CHO SIT (4-6 × 30-s Wingate sprints interspersed with 4-min rest) on muscle metabolic, serum metabolome and exercise performance adaptations in a double-blind parallel group design in recreationally active males. Following acute SIT, we observed exercise-induced increases in pan-acetylation and several genes associated with mitochondrial biogenesis, fatty acid oxidation, and NAD+-biosynthesis, along with favorable regulation of PDK4 (p = .004), NAMPT (p = .0013), and NNMT (p = .001) in FAST. Following 3 weeks of SIT, NRF2 (p = .029) was favorably regulated in FAST, with augmented pan-acetylation in CHO but not FAST (p = .033). SIT induced increases in maximal citrate synthase activity were evident with no effect of nutrition, while 3-hydroxyacyl-CoA dehydrogenase activity did not change. Despite no difference in the overall serum metabolome, training-induced changes in C3:1 (p = .013) and C4:1 (p = .010) which increased in FAST, and C16:1 (p = .046) and glutamine (p = .021) which increased in CHO, were different between groups. Training-induced increases in anaerobic (p = .898) and aerobic power (p = .249) were not influenced by nutrition. These findings suggest some beneficial muscle metabolic adaptations are evident in FAST versus CHO SIT following acute exercise and 3 weeks of SIT. However, this stimulus did not manifest in differential exercise performance adaptations.

Keywords: exercise; fasted; fasting; metabolism.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Adaptation, Physiological / physiology
  • Glycogen / metabolism
  • High-Intensity Interval Training*
  • Humans
  • Male
  • Muscle, Skeletal / physiology
  • Oxygen Consumption / physiology
  • Physical Endurance / physiology

Substances

  • Glycogen