Study on the diversity of mental states and neuroplasticity of the brain during human-machine interaction

Front Neurosci. 2022 Dec 7:16:921058. doi: 10.3389/fnins.2022.921058. eCollection 2022.

Abstract

Introduction: With the increasing demand for human-machine collaboration systems, more and more attention has been paid to the influence of human factors on the performance and security of the entire system. Especially in high-risk, high-precision, and difficult special tasks (such as space station maintenance tasks, anti-terrorist EOD tasks, surgical robot teleoperation tasks, etc.), there are higher requirements for the operator's perception and cognitive level. However, as the human brain is a complex and open giant system, the perception ability and cognitive level of the human are dynamically variable, so that it will seriously affect the performance and security of the whole system.

Methods: The method proposed in this paper innovatively explained this phenomenon from two dimensions of brain space and time and attributed the dynamic changes of perception, cognitive level, and operational skills to the mental state diversity and the brain neuroplasticity. In terms of the mental state diversity, the mental states evoked paradigm and the functional brain network analysis method during work were proposed. In terms of neuroplasticity, the cognitive training intervention paradigm and the functional brain network analysis method were proposed. Twenty-six subjects participated in the mental state evoked experiment and the cognitive training intervention experiment.

Results: The results showed that (1) the mental state of the subjects during work had the characteristics of dynamic change, and due to the influence of stimulus conditions and task patterns, the mental state showed diversity. There were significant differences between functional brain networks in different mental states, the information processing efficiency and the mechanism of brain area response had changed significantly. (2) The small-world attributes of the functional brain network of the subjects before and after the cognitive training experiment were significantly different. The brain had adjusted the distribution of information flow and resources, reducing costs and increasing efficiency as a whole. It was demonstrated that the global topology of the cortical connectivity network was reconfigured and neuroplasticity was altered through cognitive training intervention.

Discussion: In summary, this paper revealed that mental state and neuroplasticity could change the information processing efficiency and the response mechanism of brain area, thus causing the change of perception, cognitive level and operational skills, which provided a theoretical basis for studying the relationship between neural information processing and behavior.

Keywords: EEG; functional brain network; human-machine collaboration; mental state diversity; neuroplasticity.