Numerical Analysis of Microchannels Designed for Heat Sinks

Nanomanuf Metrol. 2022;5(4):354-369. doi: 10.1007/s41871-021-00118-2. Epub 2021 Nov 11.

Abstract

Conjugate heat transfer is numerically investigated using a three-dimensional computational fluid dynamics approach in various microchannel geometries to identify a high-performance cooling method for piezoelectric ceramic stacks and spindle units in high-precision machines. Straight microchannels with rectangular cross sections are first considered, showing the performance limitations of decreasing the size of the microchannels, so other solutions are needed for high applied heat fluxes. Next, many microchannel designs, focusing on streamwise geometric variation, are compared to straight channels to assess their performances. Sinusoidally varying channels produce the highest heat transfer rates of those studied. Thus, their optimization is considered at a channel width and height of 35 and 100 μm, respectively. Heat transfer increases as the amplitude and spatial frequencies of the channels increase due to increased interfacial surface area and enhanced Dean flow. The highest performance efficiencies are observed at intermediate levels of amplitude and frequency, with efficiency decreasing as these geometric parameters are increased further at the onset of flow separation. The sinusoidal channel geometries are then optimized with respect to minimizing the system's pressure drop for all applied heat fluxes between 5690 and 6510 kW/m2. Doing so created an optimal geometry curve and showed that all geometries in this region had amplitudes close to 40 μm. Therefore, imposing a fixed heat flux requirement for a case study of cooling piezoelectric ceramics, the optimized sinusoidal geometry decreases the system pressure drop by 79% relative to a straight channel while maintaining a larger minimum feature size.

Keywords: Conjugate heat transfer; Heat sink; Microchannel; Numerical simulation.