One-step synthesis of nanosilver embedding laser-induced graphene for H2O2 sensor

Synth Met. 2023 Mar:293:117235. doi: 10.1016/j.synthmet.2022.117235. Epub 2022 Dec 21.

Abstract

During the novel coronavirus pandemic, hydrogen peroxide (H2O2) played an important role as a disinfectant. However, high concentrations of H2O2 can also cause damage to the skin and eyes. Therefore, the quantitative and qualitative detection of H2O2 is an important research direction. In this work, we report a one-step laser-induced synthesis of graphene doped with Ag NPs composites. It directly trims screen printed electrodes (SPE). Firstly, we did the timekeeping current method (CA) test on H2O2 using a conventional platinum sheet as the counter electrode, and obtained linear ranges of 1-110 μM and 110-800 μM with a sensitivity of 118.7 and 96.3 μAmM-1cm-2 and a low detection limit of (LOD) 0.24 μM and 0.31 μM. On this basis we have also achieved a good result in CA testing using Screen printed carbon electrodes (SPCE), laying the foundation for portable testing. The sensor has excellent interference immunity and high selectivity.

Keywords: Ag NPs; Electrochemical sensor; Hydrogen peroxide; Laser-induced graphene.