Russian-Doll-Like Porous Carbon as Anode Materials for High-Performance Potassium-Ion Hybrid Capacitors

Small. 2023 Apr;19(14):e2206895. doi: 10.1002/smll.202206895. Epub 2022 Dec 25.

Abstract

Pore-structure design with the sophisticated and pragmatic nanostructures still remains a great challenge. In this work, porous carbon with Russian-doll-like pores rather than traditional single modal is fabricated via a boiling carbonization approach, accompanied by K+ -pre-intercalation. The most important internal factor is that alkali can penetrate into the stereoscopic space of layered Malonic acid dihydrazide and the confinement effect leads to the in-depth development of different dimensional pore structures. The oxygenated and nitrogenated surface guarantees the K+ intercalation behavior. Benefiting from their open framework and enlarged interlayer spacing, K+ -pre-intercalated porous carbon with Russian-doll-like pores (denoted as KPCRPs) as anode material exhibits promising potassium storage performance. The assembled KPCRP//activated carbon potassium-ion hybrid supercapacitor in 30 m CH3 COOK displays a high energy density of 157.29 Wh kg-1 , an ultrahigh power output of 14 kW kg-1 , and a long cycling life (99.58% capacity retention after 10000 cycles), highlighting the superiority of Russian-doll-like pore structure. This work sheds light on the designing of 3D pores structure, especially for multimodal pore architectures.

Keywords: porous carbon; potassium-ion hybrid capacitors; pre-intercalation; russian-doll-like pores.