Impact of satellite AOD data on top-down estimation of biomass burning particulate matter emission

Sci Total Environ. 2023 Mar 15:864:161055. doi: 10.1016/j.scitotenv.2022.161055. Epub 2022 Dec 21.

Abstract

Particulate matter emitted from open biomass burning affects climate, air quality and public health. In the development of remote sensing techniques, top-down methods using satellite observations have become an effective way to estimate particulate matter emissions, but different spatial resolution and coverage of satellite aerosol optical depth (AOD) products introduce great uncertainties. In this work, we assess the differences in total particulate matter (TPM) emission when calculated using different satellite AOD data. To do this, we derive top-down biomass burning TPM emission coefficients (Ce) of Australia based on 1 km and 10 km MODIS AOD products, and compare the results of emission estimation. Using high spatial resolution AOD data, a 90 % decrease of Ce mean value is found in Australia, and the quality of Ce improves by 290 %. When we use 1 km AOD data in place of 10 km AOD data, the estimation of biomass burning TPM emissions in Australia during 2012-2020 drops from 1.08Tg to 0.11Tg; the temporal trends of the two products remain the same. The TPM emission estimates for biome based on higher spatial resolution AOD data in this study are lower than Fire Energetics and Emissions Research (FEERv1) inventories by factors of 0.08-0.2. Our work shows that using satellite AOD products of higher spatial resolution avoids overestimation of biomass burning TPM emissions, and improves the quality of final estimates, providing a possible way to understand biomass burning emission more accurately.

Keywords: Biomass burning; Satellite AOD data; Top-down emission inventory; Total particulate matter emission.