Stronger susceptibilities to air pollutants of influenza A than B were identified in subtropical Shenzhen, China

Environ Res. 2023 Feb 15:219:115100. doi: 10.1016/j.envres.2022.115100. Epub 2022 Dec 21.

Abstract

Air pollution was indicated to be a key factor contributing to the aggressive spread of influenza viruses, whereas uncertainty still exists regarding to whether distinctions exist between influenza subtypes. Our study quantified the impact of five air pollutants on influenza subtype outbreaks in Shenzhen, China, a densely populated and highly urbanized megacity. Daily influenza outbreak data of laboratory-confirmed positive cases were obtained from the Shenzhen CDC, from May 1, 2013 to Dec 31, 2015. Concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matters ≤2.5 μm (PM2.5), particulate matters ≤10 μm (PM10), and ozone (O3), were retrieved from the 18 national monitoring stations. The generalized additive model (GAM) and distributed lag non-linear model (DLNM) were used to calculate the concentration-response relationships between environmental inducers and outbreak epidemics, respectively for influenza A (Flu-A) and B (Flu-B). There were 1687 positive specimens were confirmed during the study period. The cold season was restricted from Nov. 4th to Apr. 20th, covering all seasons other than the long-lasting summer. Relatively heavy fine particle matter (PM2.5) and NO2 pollution was observed in cold months, with mean concentrations of 46.06 μg/m3 and 40.03 μg/m3, respectively. Time-series analysis indicated that high concentrations of NO2, PM2.5, PM10, and O3 were associated with more influenza outbreaks at short lag periods (0-5 d). Although more Flu-B (679 cases) epidemics occurred than Flu-A (382 cases) in the cold season, Flu-A generally showed higher susceptibility to air pollutants. A 10 μg/m3 increment in concentrations of PM2.5, PM10, and O3 at lag 04, was associated with a 2.103 (95%CI: 1.528-2.893), 1.618 (95%CI: 1.311-1.996), and 1.569 (95%CI: 1.214-2.028) of the relative risk (RR) of Flu-A, respectively. A 5 μg/m3 increase in NO2 was associated with higher risk of Flu-A at lag 03 (RR = 1.646, 95%CI: 1.295-2.092) and of Flu-B at lag 04 (RR = 1.319, 95%CI: 1.095-1.588). Nevertheless, barely significant effect of particulate matters (PM2.5, PM10) on Flu-B and SO2 on both subtypes was detected. Further, the effect estimates of NO2 increased for both subtypes when coexisting with other pollutants. This study provides evidence that declining concentrations of main pollutants including NO2, O3, and particulate matters, could substantially decrease influenza risk in subtropical Shenzhen, especially for influenza A.

Keywords: Confirmed specimen; Influenza subtype; NO(2); Particulate matter; Shenzhen.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollutants* / toxicity
  • Air Pollution* / analysis
  • China / epidemiology
  • Humans
  • Influenza, Human* / epidemiology
  • Nitrogen Dioxide / analysis
  • Nitrogen Dioxide / toxicity
  • Particulate Matter / analysis
  • Particulate Matter / toxicity

Substances

  • Air Pollutants
  • Nitrogen Dioxide
  • Particulate Matter