Silicon photonic receiver for satellite laser communication terminals

Opt Lett. 2023 Jan 1;48(1):17-20. doi: 10.1364/OL.475063.

Abstract

We report the optical performance of a photonic receiver for laser communication applications. The receiver is composed of 14 × 12 grating coupler arrays. The received optical signal power will be combined electrically via germanium photodiodes. The photonic receiver is designed for 20-µm to 30-µm mode field diameter (MFD) input sources. To maximize the fill factor of the 200 µm × 200 µm light-receiving area, a design strategy has been proposed. (1) Grating couplers are customized for compactness. (2) Periods of grating couplers are designed to work as end-fire and back-fire grating couplers for the same incident angle of the input laser source. (3) Different widths of waveguides are routed to minimize cross talk. The photonic receiver is evaluated with a 10-µm MFD source. As a result of the evaluation, the receiving area considering the minimum efficiency of -10.5 dB is 95% of the designed area when illuminating 20-µm to 300-µm MFD laser sources.