Silica-based mesoporous ion-imprinted fluorescent sensors for the detection of Pb2+in aqueous environments

Nanotechnology. 2022 Dec 23;34(10). doi: 10.1088/1361-6528/aca76d.

Abstract

In this work, an environment-friendly core-shell material based on CDs@SiO2as the core and mesoporous ion-imprinted layer as the shell was reported. As a highly sensitive and accurate fluorescent sensor for the detection of Pb2+in environmental water, the composition combined ion imprinting technology with quantum dots to selectively quench the fluorescence of CDs by metal coordination in the presence of Pb2+, and the visual change of gradually weakening blue color could be observed by the naked eye for visual detection. The mesoporous structure significantly improved the detection recognition rate of CDs@SiO2@MIIPs.The molecularly imprinted sensor presented a favorable linear relationship over a Pb2+concentration range from 10 nmol l-1to 100 nmol l-1and a detection limit of 2.16 nmol l-1for Pb2+. The imprinting factor of the CDs@SiO2@MIIPs was 5.13. The sensor has a fast detection rate, is highly selective in the identification of Pb2+, and can be reused up to 10 times. The applicability of the method was evaluated by the determination of Pb2+in spiked environmental water samples with satisfactory results.

Keywords: carbon quantum dots; fluorescence detection; mesoporous; molecularly imprinted polymers; precipitation polymerization.