Modification of Commercial 3D Fused Deposition Modeling Printer for Extrusion Printing of Hydrogels

Polymers (Basel). 2022 Dec 17;14(24):5539. doi: 10.3390/polym14245539.

Abstract

In this paper, we report a simple modification of a commercially available printer with fused deposition modeling (FDM) technology for the implementation of extrusion printing of hydrogels. The main difference between an FDM printer and a gel-extrusion printer is their material propulsion system, which has to deal with ether a solid rod or liquid. By application of plastic 3D printing on an FDM printer, specific details, namely, the plunger system and parts of the gel supply system, were produced and combined with a modified printer. Two types of printing of polymer hydrogels were optimized: droplet and filament modes. The rheological ranges suitable for printing for each method were indicated, and the resolution of the samples obtained and the algorithms for creating g-code via Python scripts were given. We have shown the possibility of droplet printing of microspheres with a diameter of 100 microns and a distance between spheres of 200 microns, as well as filament printing of lines with a thickness of 300-2000 microns, which is appropriate accuracy in comparison with commercial printers. This method, in addition to scientific groups, will be especially promising for educational tasks (as a practical work for engineering students or for the introduction of 3D printing into school classes) and industrial groups, as a way to implement 3D extrusion printing of composite polymer hydrogels in a time- and cost-effective way.

Keywords: extrusion 3D printing; hydrogel; polymer composite; shear-thinning.