Are Foliar Nutrition Status and Indicators of Oxidative Stress Associated with Tree Defoliation of Four Mediterranean Forest Species?

Plants (Basel). 2022 Dec 13;11(24):3484. doi: 10.3390/plants11243484.

Abstract

Mediterranean forest ecosystems in Croatia are of very high significance because of the ecological functions they provide. This region is highly sensitive to abiotic stresses such as air pollution, high sunlight, and high temperatures alongside dry periods; therefore, it is important to monitor the state of these forest ecosystems and how they respond to these stresses. This study was conducted on trees in situ and focused on the four most important forest species in the Mediterranean region in Croatia: pubescent oak (Quercus pubescens Willd.), holm oak (Quercus ilex L.), Aleppo pine (Pinus halepensis Mill.) and black pine (Pinus nigra J. F. Arnold.). Trees were selected and divided into two groups: trees with defoliation of >25% (defoliated) and trees with defoliation of ≤25% (undefoliated). Leaves and needles were collected from selected trees. Differences in chlorophyll content, hydrogen peroxide content, lipid peroxidation and enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase, non-specific peroxidase), and nutrient content between the defoliated and undefoliated trees of the examined species were determined. The results showed that there were significant differences for all species between the defoliated and undefoliated trees for at least one of the examined parameters. A principal component analysis showed that the enzyme ascorbate peroxidase can be an indicator of oxidative stress caused by ozone. By using oxidative stress indicators, it is possible to determine whether the trees are under stress even before visual damage occurs.

Keywords: Pinus spp.; Quercus spp.; antioxidative enzymes; chlorophyll; defoliated trees; hydrogen peroxide; lipid peroxidation; nutrient concentration; oxidative stress; undefoliated trees.