Bacterial Communities and Antibiotic Resistance of Potential Pathogens Involved in Food Safety and Public Health in Fish and Water of Lake Karla, Thessaly, Greece

Pathogens. 2022 Dec 5;11(12):1473. doi: 10.3390/pathogens11121473.

Abstract

Bacterial communities, microbial populations, and antibiotic resistance of potential pathogens in the water and fish (Cyprinus carpio, flesh and gut) from different areas (A1, A2 and A3-A1 was linked with river water, A2 with cattle activity, and A3 with waters of a spring after heavy rains) of Lake Karla (Thessaly, Central Greece) were investigated. The isolated bacteria were identified using Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and were tested for resistance in 21 antibiotics. The microbiota composition of fish flesh was also studied using 16S amplicon-based sequencing Serratia fonticola and several species of Aeromonas (e.g., Aeromonas salmonicida, Aeromonas bestiarium, Aeromonas veronii, etc.) exhibited the highest abundances in all studied samples, while the microbiota profile between the three studied areas was similar, according to the culture-dependent analysis. Of them, S. fonticola was found to be resistant in the majority of the antibiotics for the water and fish (gut and flesh), mainly of the areas A1 and A2. Regarding 16S metabarcoding, the presence of Serratia and Aeromonas at genus level was confirmed, but they found at very lower abundances than those reported using the culture-dependent analysis. Finally, the TVC and the rest of the studied microbiological parameters were found at acceptable levels (4 log cfu/mL or cfu/g and 2-4 log cfu/mL or cfu/g, extremely low levels of E. coli/coliforms) in both water and fish flesh. Based on our findings, the water of Lake Karla would be used for activities such as irrigation, recreation and fishing, however, the development and implementation of a quality management tool for Lake Karla, to ensure environmental hygiene and prevention of zoonosis during the whole year, is imperative.

Keywords: Next Generation Sequencing; antibiotic resistance; fish microbiota; freshwaters; lakes; pathogens.

Grants and funding

This research received no external funding.