Stabilization improvement of the squeezed optical fields using a high signal-to-noise ratio bootstrap photodetector

Opt Express. 2022 Dec 19;30(26):47826-47835. doi: 10.1364/OE.475941.

Abstract

High-precision cavity locking is crucial for squeezing optical fields. Here, a bootstrapped low-noise photodetector is utilized in the generation process of the squeezed state of light. This process is based on a combination of a modified trans-impedance amplifier (TIA) circuit and a two-stage bootstrap amplifier circuit. This not only achieves high-precision and long-term stable locking of the optical cavity, but it also improves the degree to which the light field is squeezed. The experiment results show that the detector has a high signal-to-noise ratio (SNR) of 26.7 dB at the analysis frequency of 3 MHz when measuring the shot noise with an injection optical power of 800 µW, and the equivalent optical power noise level is lower than 2.4 pW/Hz in the frequency range of 1-30 MHz. Moreover, the squeezing degree of the quadrature amplitude squeezed state light field can be improved by more than 34.9% when the detector is used for optical cavity locking. The photodetector is useful in continuous variable (CV) quantum information research.