Study of the Oxidation Behavior of Fine-Grained Graphite ET-10 by Combining X-ray μCT with Mercury Porosimetry

Nanomaterials (Basel). 2022 Dec 7;12(24):4354. doi: 10.3390/nano12244354.

Abstract

By combining X-ray micro-computed tomography with mercury porosimetry, the evolution of the oxygen supply, porous structure, mass loss and oxidized compositions were investigated to characterize the oxidation behavior of fine-grained graphite ET-10, regarding the geometry of the specimen and its oxidation temperature. Here, the porous structure and the gas flows out of and into the porous structure were comprehensively compared for two kinds of specimens-large pure graphite (D = H = 25.4 mm), oxidized at a test facility based on ASTM D7542, and small partially SiC-coated graphite (D ≈ 1 mm and H = 1.95 mm), oxidized in the bottom section of a U-type tube. The fine grains and large geometry resulted in small pores and long flow distances, which exhausted the oxygen in the small stream to the interior of the specimen, making its oxidation deviate from the kinetics-controlled regime. In addition, the well-known three-regime theory was reasonably reinterpreted regarding the oxidation of different compositions, binders and fillers. The kinetics-controlled uniform oxidation mainly oxidizing binders is restricted by their limited contents, while the rate of surface-dominated oxidation increases continuously via the consumption of more fillers. Furthermore, we proposed a new design for the test facility used for the oxidation experiment, wherein a partially shielded millimeter specimen can be oxidized in the long straight bottom section of a U-tube, and this will be discussed further in related future studies.

Keywords: ASTM D7542; SiC coating; X-ray μCT; fine-grained graphite; gas velocity distribution; mercury porosimeter; nuclear graphite ET-10; porosity distribution; ratio of surface area to volume.