Efficiency Analysis of Fuel Cell Components with Ionic Poly-Arylether Composite Membrane

Membranes (Basel). 2022 Dec 7;12(12):1238. doi: 10.3390/membranes12121238.

Abstract

We use polyethylene glycol as an additive to explore how the hydrogen bonding of this additive changes the properties of SA8 blended sulfonated polyetheretherketone (SPEEK) composite films. We mixed a 5%wt polyethylene glycol solution into a 12.5%wt SA8 solution, and then prepared a film with a total weight of 40 g at a ratio of 1:99. The SA8 (PEG) solution was prepared and then mixed with 5%wt SPEEK solution, and a film-forming solution with a total weight of 8g in different mixing ratios was created. Polyethylene glycol (PEG) was mixed into the sulfonated polyarylether polymer SA8 to form physical cross-linking. Therefore, the sulfonated polyether ether ketone SPEEK was mixed in, and it exhibited good thermal stability and dimensional stability. However, there was some decrease in proton conductivity as the proportion of SPEEK increased. Although SPEEK mixed with sulfonated polymer reduces the proton conductivity, the physical cross-linking of PEG can improve the proton conductivity of the composite membrane, and adding SPEEK can not only solve the problem of the high sulfonation film swelling phenomenon, it can also improve the dimensional stability of the film through the hydrogen bonding force of PEG and obtain a composite film with excellent properties.

Keywords: dimensional stability; hydrogen bonding; physical cross-linking; polyethylene glycol; thermal stability.