Techno-Economic Comparison of Integration Options for an Oxygen Transport Membrane Unit into a Coal Oxy-Fired Circulating Fluidized Bed Power Plant

Membranes (Basel). 2022 Dec 2;12(12):1224. doi: 10.3390/membranes12121224.

Abstract

The inclusion of membrane-based oxygen-fired combustion in power plants is considered an emerging technology that could reduce carbon emissions in a more efficient way than cryogenic oxygen-fired processes. In this paper, a techno-economic assessment was developed for a 863 MWel,net power plant to demonstrate whether this CCS technique results in a reduction in efficiency losses and economic demand. Four configurations based on oxygen transport membranes were considered, while the benchmark cases were the air combustion process without CO2 capture and a cryogenic oxygen-fired process. The type of driving force through the membrane (3-end or 4-end), the point of integration into the oxy-fuel combustion process, the heating system, and the pollutant control system were aspects considered in this work. In comparison, the efficiency losses for membrane-based alternatives were lower than those in the cryogenic oxygen-fired process, reaching savings of up to 14% net efficiency. Regarding the specific energy consumption for CO2 capture, the configuration based on the oxygen transport membrane unit with 4-end mode and hot filtration presented 1.01 kWel,net,·h/kgCO2 captured with 100% CO2 recovery, which is an improvement of 11% compared with the cases using cryogenic oxygen. Comparing economic aspects, the specific investment costs for cases based on the oxygen transport membrane unit varied between 2520 and 2942 $/kWel,net·h. This was between 39.6 and 48.2% above the investment for the reference case without carbon capture. However, its hypothetical implantation could suppose a savings of 10.7% in terms of investment cost compared with cryogenic oxygen-based case. In terms of the levelized cost of electricity and the cost of CO2 avoidance, the oxygen transport membrane configurations achieved more favorable results compared with the cryogenic route, reaching savings up to 14 and 38%, respectively. Although oxygen transport membrane units are currently not mature for commercial-scale applications, the results indicated that its application within carbon capture and storage technologies can be strongly competitive.

Keywords: circulating fluidized bed boiler; oxy-fuel combustion; oxygen transport membrane; techno-economic.