Study on Microstructure and Properties of Black Micro-Arc Oxidation Coating on AZ31 Magnesium Alloy by Orthogonal Experiment

Materials (Basel). 2022 Dec 8;15(24):8755. doi: 10.3390/ma15248755.

Abstract

The effects of CuSO4 concentration, voltage and treating time on the hemisphere emissivity and corrosion resistance of AZ31B magnesium-alloy black micro-arc oxidation coatings were studied by orthogonal experiment. The microstructure, phase composition, corrosion resistance and hemisphere emissivity of the coating were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, electrochemical test and infrared emissivity spectrometer, respectively. The results showed that the influences of each factor on corrosion current density and the hemisphere emissivity are as follows: voltage > treating time > CuSO4 concentration. The black MAO coatings are mainly composed of WO3, MgAl2O4, CuAl2O4, MgO, CuO and MgF2. The CuO and CuAl2O4 phases are the main reasons for blackness of the coatings. The coating exhibits the best corrosion resistance under the conditions of CuSO4 concentration 1.5 g/L, oxidation voltage 500 V and treating time 10 min. Additionally, the variation trends of hemispherical emissivity and roughness of the black MAO coating are the same when the composition of the coatings is similar. When the concentration of CuSO4 is 1.5 g/L, the oxidation voltage is 450 V and the treatment time is 10 min, the coating with the highest hemispherical emissivity of 0.84 can be obtained.

Keywords: AZ31B magnesium alloy; black MAO coating; corrosion resistance; hemisphere emissivity; micro-arc oxidation; orthogonal experiment.

Grants and funding

This research was supported by the Major Science and Technology Project of Shaanxi Province (China) grant number 2020zdzx04-03-02.