Tuning Cu-Content La1-xSrxNi1-yCuyO3-δ with Strontium Doping as Cobalt-Free Cathode Materials for High-Performance Anode-Supported IT-SOFCs

Materials (Basel). 2022 Dec 7;15(24):8737. doi: 10.3390/ma15248737.

Abstract

Cu-content La1-xSrxNi1-yCuyO3-δ perovskites with A-site strontium doping have been tuned as cobalt-free cathode materials for high-performance anode-supported SOFCs, working at an intermediate-temperature range. All obtained oxides belong to the R-3c trigonal system, and phase transitions from the R-3c space group to a Pm-3m simple perovskite have been observed by HT-XRD studies. The substitution of lanthanum with strontium lowers the phase transition temperature, while increasing the thermal expansion coefficient (TEC) and oxygen non-stoichiometry δ of the studied materials. The thermal expansion is anisotropic, and TEC values are similar to commonly used solid electrolytes (e.g., 14.1 × 10-6 K-1 for La0.95Sr0.05Ni0.5Cu0.5O3-δ). The oxygen content of investigated compounds has been determined as a function of temperature. All studied materials are chemically compatible with GDC-10 but react with LSGM and 8YSZ electrolytes. The anode-supported SOFC with a La0.95Sr0.05Ni0.5Cu0.5O3-δ cathode presents an excellent power density of 445 mW·cm-2 at 650 °C in humidified H2. The results indicate that La1-xSrxNi1-yCuyO3-δ perovskites with strontium doping at the A-site can be qualified as promising cathode candidates for anode-supported SOFCs, yielding promising electrochemical performance in the intermediate-temperature range.

Keywords: Cu-rich perovskites; Sr doping in (LaSr)(NiCu)O3; anode-supported SOFCs; cathode materials; intermediate-temperature solid oxide fuel cells.