Transcriptomic Analyses Suggest the Adaptation of Bumblebees to High Altitudes

Insects. 2022 Dec 17;13(12):1173. doi: 10.3390/insects13121173.

Abstract

Determining the adaptive mechanisms by which bumblebees adapt to high altitudes can help us to better understand their distribution, providing a basis for the future protection and utilization of bumblebee resources. For this study, the adaptive mechanisms of two dominant bumblebee species in the northeastern Qinghai-Tibet Plateau-Bombus kashmirensis and B. waltoni-were studied through transcriptomics methods. For each species, enrichment analysis of the differentially expressed genes and gene set enrichment analysis were carried out between samples collected at different altitudes (4000 m, 4500 m, and 5000 m). The results indicate that these bumblebees tend to up-regulate energy metabolism-related genes when facing extremely high-altitude environments. Of the enriched pathways up-regulated in higher altitudes, the pentose and glucuronate interconversions pathway presented the most severe up-regulation in multiple comparisons of different altitudes for B. kashmirensis, as well as the AMPK signaling pathway, which was found to be up-regulated in both species. Notably, limited by the extreme hypoxic conditions in this study, oxidative phosphorylation was found to be down-regulated with increasing altitude, which is uncommon in studies on bumblebee adaptation to high altitudes.

Keywords: bumblebees; high-altitude adaptation; hypoxia; low air density.