Carbonyl Profiles of Electronic Nicotine Delivery System (ENDS) Aerosols Reflect Both the Chemical Composition and the Numbers of E-Liquid Ingredients-Focus on the In Vitro Toxicity of Strawberry and Vanilla Flavors

Int J Environ Res Public Health. 2022 Dec 14;19(24):16774. doi: 10.3390/ijerph192416774.

Abstract

Propylene glycol (PG) and glycerin (G) are the most widely used humectants in electronic nicotine delivery system (ENDS) devices. Carbonyls are present in aerosols produced when ENDS devices heat PG and G. Whether aerosolized PG and G are innocuous to the lungs has not been established. Here, we determined the chemical profiles of ENDS aerosols containing three humectant ratios (30/70, 50/50 and 70/30, PG/VG), for three flavors (strawberry, vanilla and Catalan cream) containing either 12 or 18 mg/mL of nicotine. Additionally, we examined the in vitro toxicity of the strawberry- and vanilla-flavored ENDS aerosol in human lung epithelial cells (BEAS-2B) exposed at the air-liquid interface for 1 h. For strawberry- and vanilla-flavored aerosols produced by a 3rd-generation ENDS device with the same PG/G ratio, the e-liquid nicotine content of 12 and 18 mg/mL did not transfer to the aerosol with substantial differences in concentrations. Our data also indicate the presence of carbonyls in all three flavored e-cig aerosols analyzed, with levels exceeding 1 µg/puff for acetone, butyraldehyde, and acetaldehyde, in strawberry-, vanilla, and Catalan cream-flavored e-cig aerosols, respectively. Furthermore, closed-system ENDS of the fourth generation emitted trace levels of carbonyls in the aerosols (<0.3 µg/puff), while open-system tank-style ENDS of the third generation produced elevated levels of harmful chemicals, including acrolein (>1 µg/puff), formaldehyde (>5 µg/puff), and m- & p-tolualdehyde (>4 µg/puff). Moreover, under non-cytotoxic conditions, BEAS-2B cells exposed to strawberry-flavored aerosols exhibited significantly increased reactive oxygen and nitric oxide species (ROS/NOS) levels in cell media compared to air controls, while vanilla-flavored ENDS aerosols up-regulated the expression of pro-inflammatory and oxidative stress markers. Our data suggest (a) that ENDS aerosol chemical composition will vary based upon the presence and concentration of the initial e-liquid ingredients, with a pronounced impact of the flavoring components; and (b) short-term exposures to flavored ENDS aerosols may impair lung cells' redox signaling in a flavor-specific manner.

Keywords: air-liquid interface; chemical profile of ENDS aerosols; electronic nicotine delivery system (ENDS); electronic-cigarette; in vitro toxicity.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Aerosols
  • Electronic Nicotine Delivery Systems*
  • Fragaria*
  • Humans
  • Nicotine
  • Propylene Glycol / toxicity
  • Reactive Oxygen Species
  • Vanilla*

Substances

  • Nicotine
  • Aerosols
  • Reactive Oxygen Species
  • Propylene Glycol