Combination of Water-Saving Irrigation and Nitrogen Fertilization Regulates Greenhouse Gas Emissions and Increases Rice Yields in High-Cold Regions, Northeast China

Int J Environ Res Public Health. 2022 Dec 8;19(24):16506. doi: 10.3390/ijerph192416506.

Abstract

Increased rice production, which benefitted from cropping areas expansion and continuous N applications, resulted in severe increases in greenhouse gases (GHG) emissions from 1983 to 2019 in Heilongjiang Province, China. Therefore, field trials were performed in the high-cold Harbin region, Northeast China, to determine the efficiency of incorporating water regimes with N fertilization in minimizing the impact of rice production on GHG emissions. Two water-saving irrigation strategies, intermittent irrigation (W1) and control irrigation (W2), were used relative to continuous flooding (W0), and we combined them with six fertilized treatments. Our results demonstrated that W1 and W2 significantly decreased seasonal CH4 emissions by 19.7-30.0% and 11.4-29.9%, enhanced seasonal N2O emissions by 77.0-127.0% and 16.2-42.4%, and increased significantly yields by 5.9-12.7% and 0-4.7%, respectively, compared with W0. Although trade-offs occurred between CH4 and N2O emissions, W1 and W2 resulted in significant reductions in global warming potential (GWP). Moreover, low N rates (<120 kg N ha-1) performed better in GWP than high N rates. N fertilization and irrigation regimes had remarkable effects on rice yields and GWP. In conclusion, the incorporation of W1 and a N application under 120 kg N ha-1 could simultaneously mitigate GWP while enhancing production in black soils in high-cold Northeast China.

Keywords: greenhouse gases emissions; high-cold; intermittent irrigation; methane; nitrous oxide; rice field.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture / methods
  • China
  • Fertilizers / analysis
  • Greenhouse Gases* / analysis
  • Methane / analysis
  • Nitrogen
  • Nitrous Oxide / analysis
  • Oryza*
  • Soil
  • Water

Substances

  • Greenhouse Gases
  • Nitrogen
  • Nitrous Oxide
  • Methane
  • Soil
  • Water
  • Fertilizers

Grants and funding

This work was supported by the Open Project of Key Laboratory of Germplasm Enhancement and Physiology and Ecology of Food Crop in Cold Region of the Ministry of Education (CXSTOP202201), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA28020401), National Key Research and Development Program of China (2017YFD0300105), National Natural Science Foundation of China (41671241, 41877325), Scientific Research Fees of Heilongjiang-affiliated Scientific research institutes (CZKYF2021-2-C027),the Heilongjiang Postdoctoral Foundation (LBH-Q18137), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2018349), Ministry of Agriculture, P. R. China (AESMA-OPP-2019002).