Investigating Changes in pH and Soluble Solids Content of Potato during the Storage by Electronic Nose and Vis/NIR Spectroscopy

Foods. 2022 Dec 16;11(24):4077. doi: 10.3390/foods11244077.

Abstract

Potato is an important agricultural product, ranked as the fourth most common product in the human diet. Potato can be consumed in various forms. As customers expect safe and high-quality products, precise and rapid determination of the quality and composition of potatoes is of crucial significance. The quality of potatoes may alter during the storage period due to various phenomena. Soluble solids content (SSC) and pH are among the quality parameters experiencing alteration during the storage process. This study is thus aimed to assess the variations in SSC and pH during the storage of potatoes using an electronic nose and Vis/NIR spectroscopic techniques with the help of prediction models including partial least squares (PLS), multiple linear regression (MLR), principal component regression (PCR), support vector regression (SVR) and an artificial neural network (ANN). The variations in the SSC and pH are ascending and significant. The results also indicate that the SVR model in the electronic nose has the highest prediction accuracy for the SSC and pH (81, and 92%, respectively). The artificial neural network also managed to predict the SSC and pH at accuracies of 83 and 94%, respectively. SVR method shows the lowest accuracy in Vis/NIR spectroscopy while the PLS model exhibits the best performance in the prediction of the SSC and pH with respective precision of 89 and 93% through the median filter method. The accuracy of the ANN was 85 and 90% in the prediction of the SSC and pH, respectively.

Keywords: VOCs; chemometrics; gas sensor; non-destructive methods.

Grants and funding

This research received no external funding.