Routine Diagnostics Confirm Novel Neurodevelopmental Disorders

Genes (Basel). 2022 Dec 7;13(12):2305. doi: 10.3390/genes13122305.

Abstract

Routine diagnostics is biased towards genes and variants with satisfactory evidence, but rare disorders with only little confirmation of their pathogenicity might be missed. Many of these genes can, however, be considered relevant, although they may have less evidence because they lack OMIM entries or comprise only a small number of publicly available variants from one or a few studies. Here, we present 89 individuals harbouring variants in 77 genes for which only a small amount of public evidence on their clinical significance is available but which we still found to be relevant enough to be reported in routine diagnostics. For 21 genes, we present case reports that confirm the lack or provisionality of OMIM associations (ATP6V0A1, CNTN2, GABRD, NCKAP1, RHEB, TCF7L2), broaden the phenotypic spectrum (CC2D1A, KCTD17, YAP1) or substantially strengthen the confirmation of genes with limited evidence in the medical literature (ADARB1, AP2M1, BCKDK, BCORL1, CARS2, FBXO38, GABRB1, KAT8, PRKD1, RAB11B, RUSC2, ZNF142). Routine diagnostics can provide valuable information on disease associations and support for genes without requiring tremendous research efforts. Thus, our results validate and delineate gene-disorder associations with the aim of motivating clinicians and scientists in diagnostic departments to provide additional evidence via publicly available databases or by publishing short case reports.

Keywords: epilepsy; exome sequencing; gene–disorder association; neurodevelopmental disorder; routine diagnostics.

MeSH terms

  • Exome
  • Humans
  • Neurodevelopmental Disorders* / genetics

Grants and funding

This research received no external funding.