Human PSEN1 Mutant Glia Improve Spatial Learning and Memory in Aged Mice

Cells. 2022 Dec 18;11(24):4116. doi: 10.3390/cells11244116.

Abstract

The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aβ42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aβ42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aβ42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.

Keywords: Alzheimer’s disease; astrocytes; experimental transplantation; iPSC; oligodendrocyte precursor cells; presenilin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging
  • Alzheimer Disease* / genetics
  • Alzheimer Disease* / metabolism
  • Amyloid beta-Peptides* / metabolism
  • Amyloid beta-Protein Precursor / genetics
  • Animals
  • Astrocytes / metabolism
  • Humans
  • Male
  • Mice
  • Presenilin-1 / genetics
  • Presenilin-1 / metabolism
  • Spatial Learning

Substances

  • Amyloid beta-Peptides
  • Amyloid beta-Protein Precursor
  • Presenilin-1
  • PSEN1 protein, human

Grants and funding

The project was funded through the following funding organizations under the aegis of JPND: Finland, Academy of Finland (No 301253 J.K., 301234 T.M.); France, Agence Nationale de la Recherche (C.R.). This project has also received funding from the European Union’s Horizon 2020 research and innovation program (grant agreement No 643417), from Sigrid Juselius Foundation, from Business Finland, and from Biocenter Finland through Biocenter Kuopio (H.T.). Grant numbers are not applicable for the latter foundations. Open access funding was provided by the University of Helsinki.