SLC6A3, HTR2C and HTR6 Gene Polymorphisms and the Risk of Haloperidol-Induced Parkinsonism

Biomedicines. 2022 Dec 13;10(12):3237. doi: 10.3390/biomedicines10123237.

Abstract

Antipsychotic-induced parkinsonism (AIP) is the most common type of extrapyramidal side effect (EPS), caused by the blockage of dopamine receptors. Since dopamine availability might influence the AIP risk, the dopamine transporter (DAT) and serotonin receptors (5-HTRs), which modulate the dopamine release, may be also involved in the AIP development. As some of the individual differences in the susceptibility to AIP might be due to the genetic background, this study aimed to examine the associations of SLC6A3, HTR2C and HTR6 gene polymorphisms with AIP in haloperidol-treated schizophrenia patients. The Extrapyramidal Symptom Rating Scale (ESRS) was used to evaluate AIP as a separate entity. Genotyping was performed using a PCR, following the extraction of blood DNA. The results revealed significant associations between HTR6 rs1805054 polymorphism and haloperidol-induced tremor and rigidity. Additionally, the findings indicated a combined effect of HTR6 T and SLC6A3 9R alleles on AIP, with their combination associated with significantly lower scores of ESRS subscale II for parkinsonism, ESRS-based tremor or hyperkinesia and ESRS subscales VI and VIII. These genetic predictors of AIP could be helpful in better understanding its pathophysiology, recognizing the individuals at risk of developing AIP and offering personalized therapeutic strategies for the patients suffering from this EPS.

Keywords: dopamine transporter; gene polymorphisms; genotype; haloperidol; haplotype; interaction; parkinsonism; schizophrenia; serotonin receptors.

Grants and funding

This research received no external funding.