A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials

Biosensors (Basel). 2022 Dec 6;12(12):1134. doi: 10.3390/bios12121134.

Abstract

To enhance the treatment of motor function impairment, patients' brain signals for self-control as an external tool may be an extraordinarily hopeful option. For the past 10 years, researchers and clinicians in the brain-computer interface (BCI) field have been using movement-related cortical potential (MRCP) as a control signal in neurorehabilitation applications to induce plasticity by monitoring the intention of action and feedback. Here, we reviewed the research on robot therapy (RT) and virtual reality (VR)-MRCP-based BCI rehabilitation technologies as recent advancements in human healthcare. A list of 18 full-text studies suitable for qualitative review out of 322 articles published between 2000 and 2022 was identified based on inclusion and exclusion criteria. We used PRISMA guidelines for the systematic review, while the PEDro scale was used for quality evaluation. Bibliometric analysis was conducted using the VOSviewer software to identify the relationship and trends of key items. In this review, 4 studies used VR-MRCP, while 14 used RT-MRCP-based BCI neurorehabilitation approaches. The total number of subjects in all identified studies was 107, whereby 4.375 ± 6.3627 were patient subjects and 6.5455 ± 3.0855 were healthy subjects. The type of electrodes, the epoch, classifiers, and the performance information that are being used in the RT- and VR-MRCP-based BCI rehabilitation application are provided in this review. Furthermore, this review also describes the challenges facing this field, solutions, and future directions of these smart human health rehabilitation technologies. By key items relationship and trends analysis, we found that motor control, rehabilitation, and upper limb are important key items in the MRCP-based BCI field. Despite the potential of these rehabilitation technologies, there is a great scarcity of literature related to RT and VR-MRCP-based BCI. However, the information on these rehabilitation methods can be beneficial in developing RT and VR-MRCP-based BCI rehabilitation devices to induce brain plasticity and restore motor impairment. Therefore, this review will provide the basis and references of the MRCP-based BCI used in rehabilitation applications for further clinical and research development.

Keywords: biomedical signal; brain–computer interface; electroencephalography; human healthcare; machine learning; neurological diseases; robot therapy; virtual reality.

Publication types

  • Systematic Review
  • Review

MeSH terms

  • Brain
  • Brain-Computer Interfaces*
  • Electroencephalography / methods
  • Humans
  • Robotics*
  • Virtual Reality*